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Fourier Analysis for Proton ± Proton Interaction at
High Energy
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The charged-particle multiplicity distribution and the inelastic cross sections for
proton ±proton (p±p) interactions are studied. The parton two-fireball model based
on an impact parameter is adopted. The overlapping function, known to be
complicated and nonlinear, is represented using a Fourier series. Cross sections
and charged-particle multiplicity distributions are derived. Good agreement is
found between theoretical calculations and experimental data at different energies.

1. INTRODUCTION

Much of what we know about the dynamics of multiparticle production

comes from the study of multiplicity distributions [1]. Various methods have

been suggested by different authors for describing the multiplicity distribution

of the particles produced in high-energy interactions at ultrarelativistic ener-

gies. Among these are multiplicity scaling [2, 3], the negative binomial

distribution (NBD) [4], the two-source model [5], the partially coherent laser
distribution (PCLD) [6], Monte Carlo studies of pion distributions from heavy

ion collisions [7], the statistical bootstrap model [8], the three-fireball model

[9], quark models [10], fragmentation models [11, 12], and many others. In

this connection, the multiplicity distribution of proton±proton (p±p) interac-

tions for various energies can be described by a parton two-fireball model
as in refs. 13±15, where hadrons are composed of quarks and gluons that

collectively can be considered as pointlike particles called partons [16]. This

nucleon structure has been used in different mathematical models [17, 18]

along with other assumptions to describe hadron±hadron interactions. The

partons behave as free pointlike particles in high±energy collisions. Thus
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one can use the impulse approximation and deal with cross sections for

individual partons. It is assumed that the partons are homogeneously distrib-

uted in the nucleon volume, which has a spherical shape at rest.
In this work, a simple yet efficient mathematical model is utilized to

study the multiparticle production process in the p±p interaction. It is based

on representing the overlapping function (z function), known to be compli-

cated and nonlinear, using a trigonometric Fourier series. The resulting trigo-

nometric function is simple and analytic, and thus facilitates the analysis.

The representation can be made arbitrarily accurate by increasing the order
of the Fourier series. The resulting multiplicity distributions agree with experi-

mental data.

The rest of the paper is organized as follows: Section 2 reviews the

essential features for the parton two-fireball model and introduces the pro-

posed Fourier series approximation. Section 3 reviews the p±p interaction

cross sections and demonstrates the efficiency of the proposed analysis in
fitting experimental data. The resulting charged-particle multiplicity distribu-

tion is considered in Section 4 for different energies. Section 5 concludes

the work.

2. MODELING THE p ± p INTERACTION

2.1. A Parton Two-Fireball Model:

The impact parameter analysis considered in this paper to study the p±p

interaction at high energies employs the parton two-fireball model. During

a collision, the majority of parton momentum is carried by the longitudinal

component. The nucleons are semitransparent objects and the two interacting
nucleons penetrate each other in the incident direction. In p±p collision, only

those partons in the overlapping volume of the two protons have a probability

to interact. The interaction is stopped in the center-of-mass system (CMS),

and therefore the kinetic energy (KE) is consumed in the excitation of the

two fireballs produced. Each fireball decays into a number of newly created
particles with an isotropic angular distribution in its own rest frame.

2.2. The Overlapping Function

The number of partons participating in the p±p interaction is defined

according to an incident impact parameter, particularly at high energies where

the Coulomb interaction between the two protons is negligible. The geometri-
cal cross section for p±p interaction is given by the area of a circle of radius

2r, where it is assumed that the proton at rest is a sphere of radius r. Therefore,

the interaction statistical probability for an impact parameter b within an

interval db is given by
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p(b) db 5
b db

2r 2 , 0 # b # 2r (1)

Let us use a dimensionless impact parameter x defined as x 5 b/2r. Therefore,
(1) can be written as

p(x) dx 5 2x dx, 0 # x # 1 (2)

Now we employ the overlapping volume V(b) of ref. 19 (spherical cap) and

assume, for the sake of the calculations, that the overlapping volume is given

approximately as a clean cut. Then the fraction of partons z participating in

the interaction may be written as

z(x) 5 1 V(x)

V0 2 5 F 1 2
3

4
x 2

3

2
x2 1

5

4
x3G (3)

where V0 is the volume of the nucleon.

According to (2) and (3), the overlapping function (z-function) distribu-

tion may be written as

p(z) dz 5
2z dz

2 2.438 2 0.75x 2 1 1 7.125x 1 0.75x2 1 9.375x3 1 4.6688x4 ,

0 # z # 1 (4)

Clearly, (4) shows that the z-function is complicated and nonlinear. Simpli-

fying this function has been the goal of a number of researchers [e.g., 13,

14]. The next section proposes a powerful, simple, and efficient simplification.

2.3. Proposed Trigonometric Fourier Series Representation for the
Overlapping Function

As seen from the previous section, the overlapping function is not easy

to manipulate mathematically. However, signal processing techniques make
it possible to facilitate manipulating such functions. It is shown that the

overlapping function is defined over the interval [0, 1]. Such a function may

be represented as a trigonometric Fourier series [20] as follows:

p(z) 5 a0 1 o
K

k 5 1

ak cos(2 p kz) 1 o
K

k 5 1

bk sin(2 p kz) (5)

where

a0 5 #
1

0

p(z) dz; ak 5 2 #
1

0

p(z) cos(2 p kz) dz; (6)

bk 5 2 #
1

0

p(z) sin(2 p kz) dz
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K is the order of the Fourier series representation. Intuitively, as K increases,

the representation becomes more accurate. In the limiting case when k tends

to infinity, the representation is exact. Trapezoidal numerical integration has
been used to evaluate the Fourier series coefficients in (6). The representation

may be put in the more compact form [20]

p(z) 5 o
K

k 5 0

ck cos(2 p kz 1 u k); ck 5 ! a2
k 1 b2

k; u k 5 2 tan 2 1 bk

ak

(7)

Several advantages are immediately apparent employing this representation.

The accuracy is tunable through the order k. The resulting trigonometric
functions are analytic and can be easily differentiated and integrated. The

analysis has been facilitated, and, as will be shown in the next sections, the

resulting theoretical behavior fits experimental data.

3. p ± p INTERACTION CROSS SECTIONS

The p±p interaction cross sections are divided into elastic, s el, and

inelastic, s i , with their sum being the total cross section, s t. To calculate

these cross sections, we must know the limits of each one. The elastic

Fig. 1. Probability of inelastic collision. (V) Experimental , (*) theoretical.
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collisions are those interactions which create no new particles; in other words,

the momentum transferred is not enough for the creation of at least one pion.

The inelastic collisions are those interactions in which there is a probability
for creation of new particles with at least one pion from each fireball.

The slight increase of the inelastic cross section s i with energy observed

experimentally [21] can be explained roughly by introducing a threshold

value Zth for the elastic collisions. We therefore assume a threshold for elastic

scattering corresponding to the exchange of one pion of mass m p ; then the

excitation energy in the CMS for each fireball will be

Mf 2 m 5
m p

2
5 T0 Zth (8)

where M f is the fireball rest mass, m is the proton mass at rest, T0 is the KE

of the proton in the CMS before collision, and

Zth 5
m p

2T0

5
m p

Q
(9)

where Q is the total KE in the CMS ( 5 2T0).

If we assume that the minimum fireball mass required for the creation

process (M fmin) is that corresponding to the production of one pion, i.e., with

an excitation energy equals to the energy-requi red for the creation of one
pion, say e , then we have

M fmin 5 e 1 m 5 T0 zmin 1 m (10)

where zmin is the corresponding overlapping function. Hence, elastic and

inelastic processes may be classified as

M f , e 1 m (elastic); M f $ e 1 m (inelastic)

The value of zmin is

zmin 5
e
T0

5
2 e
Q

(11)

Moreover, if zth corresponds to an impact parameter x 5 xth and zmax corres-

ponds to xmin, then we have

z 5 0 zth zmax 1

x 5 1 xth xmin 0

) ) ) )
¬ No interaction ® ¬ Ð Elastic Ð ® ¬ Ð Ð ± Inelastic ±Ð Ð ®

¬ Ð Ð Ð Ð Ð Ð ± Total ±Ð Ð Ð Ð Ð Ð ®
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Fig. 2. Charged multiplicity distributions. ( ) ) Experimental; (Ð ) theoretical.

Therefore, the probability of the inelastic collisions is given by

Pincl 5
s i

s t

5
#

l

zmin

p(z) dz

#
l

zth

p(z) dz

(12)

With p(z) as in (7), we have

s i

s t

5
a0(1 2 zmin) 1 o

K

k 5 1

ck

2 p k
[sin(2 p k 1 u k) 2 sin(2 p kzmin 1 u k)]

a0(1 2 zth) 1 o
K

k 5 1

ck

2 p k
[sin(2 p k 1 u k) 2 sin(2 p kzth 1 u k]

(13)

The probability of elastic collisions is

Pee 5
s el

s t

5 1 2
s i

s t

(14)

We have calculated s i / s t as a function of the free energy Q using e 5 0.47
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Fig. 2. Continued.

GeV. The results of these calculations, illustrated in Fig. 1, show a good fit

with experimental data at high energies, while the fit is not so good at low

energies. This means that the inelastic threshold introduced above has a small

effect on the cross-section ratios. The disagreement with observations at low

energies could be due to the assumptions of the present model, which seem

to be valid at high energies only.

4. CHARGED-PARTICLE MULTIPLICITY DISTRIBUTIONS

After collision, the number of pions from each fireball ns will be given by

ns 5
T0z

e
5

zQ

2 e
(15)

Using (7) and (15), we get

p(z) dz 5
2 e
Q F o Kk 5 0

ck cos 1 4 p e ns

Q
k 1 u k 2 G dns (16)

Integrating the right-hand side of (16), from ns to ns 1 1 we obtain the

probability of creating ns particles pns as
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Fig. 2. Continued.

pns 5
2 e a0

Q
1 F o

K

k 5 1

ck

2 p k
sin 1 4 p e (ns 1 1)

Q
k 1 u k 2

2 o
K

k 5 1

ck

2 p k
sin 1 4 p e ns

Q
k 1 u k 2 G (17)

The probability distribution for the emission of a charged pair of pions from
one fireball is assumed to be binomial in the form:

C (ns) 5
N!

nc! (N 2 nc)!
unc v(N 2 nc) (18)

where N is the total created pairs of particles (N 5 ns /2), nc is the number

of pairs of charged particles, and u and v are the probabilities that the
pair of particles is charged or uncharged (neutral and heavier particles than

pions), respectively.

Now, the number of charged particles from one fireball is given by n 5
2nc 1 1. Then the distribution of charged particles from one fireball is
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Fig. 2. Continued.

w (n) 5 o
ns even

c (ns)pns (19)

Because of charge conservation, the probability of getting a number of charged

pairs out of an even total number ns is the same as the probability of getting

the same number of charged pairs out of the next odd number, i.e., ns 1 1.

Therefore, we can calculate the probability of getting any number of charged
particles nc from two fireballs as

pnc 5 o
nc

n,odd
w (n) w (nc 2 n); nc 5 2,4, . . . ,Q/ « (20)

Equation (20) has been used to calculate the charged multiplicity distribution

for different energies. These distributions are plotted in Fig. 2 along with

experimental data [22±25]. The experimental data are shown as vertical lines.
The maximum and minimum of these vertical lines represent the maximum

positive and negative observations, respectively. The solid line represents the

theoretical calculated distribution employing (20). The theoretical distribution

has been optimized according to the probability of uncharged particles v in
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Fig. 2. Continued.

(18). The good agreement between experimental and theoretical distributions

is clear. It is observed that the probability of uncharged particles (neutral and
heavier particles than pions) increases as the energy level increases. The

following illustrates the optimum v for different energies:

v 0.33 0.41 0.42 0.50 0.57 0.60

Q(GeV) 12.03 17.79 22.02 25.75 29.20 43.20

5. CONCLUSION

The proton±proton interaction at high energies has been investigated in

the context of a parton two-fireball model. The conventional overlap function

(z-function) is shown to be nonlinear and difficult to manipulate mathemati-

cally. We proposed a trigonometric Fourier series representation of the z-
function. The Fourier series coefficients have been calculated employing

trapezoidal numerical integration. It was shown that the resulting trigonomet-

ric series facilitates the mathematical analysis. The proposed representation

was employed to deduce the p±p interaction cross sections as well as the
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Fig. 2. Continued.

charged multiplicity distribution at a range of energies. The emission of
secondary particles is assumed to follow a binomial distribution. Figures

comparing the theoretical predictions to experimental data show that the

cross-section fitting is somewhat poor at lower energies and good at higher

energies. On the other hand, the fitting of the charged-part icle distribution

is good everywhere. However, this is based on optimizing the probability of

the other created particles. It is shown that the probability of neutral and
heavier particles increases as the energy increases.
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